

Fig. 1. Molecular structure of (1), with $30 \%$ probability ellipsoids, showing the atom-numbering scheme.
as a chiral analog of nitroaniline as a possible candidate for non-linear optical, second-harmonic generation (Chemla \& Zyss, 1987).

(1)

Acknowledgement is made to the Donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research (grant ACS-PRF AC-20714 to JKW) and to the Robert A. Welch Foundation (grant F-233 to RED and F-626 to JKW).


Fig. 2. Packing diagram of (1).

## References

Chemla, D. S. \& Zyss, J. (1987). Editors. Nonlinear Optical Properties of Organic Molecules and Crystals, Vols. 1 and 2. New York: Academic Press.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Gadol, S. M. \& Davis, R. E. (1982). Organometallics, 1, 1607-1613.
International Tables for X-ray Crystallography (1974). Vol. IV, p. 55. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1987). SHELXTL-Plus. Nicolet XRD Corporation, Madison, Wisconsin, USA.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Phys. Chem. 42, 3175-3187.
Whitesell, J. K., Minton, M. \& Chen, K.-M. (1988). J. Org. Chem. 53, 5383-5384.

Acta Cryst. (1990). C46, 150-152

# Structure of 6-Hydroxymethyl-6,9-dimethylbicyclo[6.3.0]undeca-2,4-dien-1-ol 

By Masood Parvez<br>Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA

(Received 31 January 1989; accepted 31 July 1989)

[^0]Table 1. Final fractional coordinates and equivalent isotropic themal parameters ( $\AA^{2}$ ) with e.s.d.'s in parentheses

|  | $x$ | $y$ | $z$ | $U_{\text {eq }}^{*}$ | Occupancy |
| :--- | ---: | :---: | :---: | :---: | :---: |
| O1 | $-0.1406(1)$ | $0.3642(2)$ | $0.1270(1)$ | $0.052(1)$ |  |
| O2 | $-0.2318(1)$ | $0.1037(1)$ | $0.0955(1)$ | $0.055(1)$ |  |
| C1 | $-0.0009(2)$ | $0.3861(2)$ | $0.1217(1)$ | $0.042(1)$ |  |
| C2 | $0.0338(2)$ | $0.3965(2)$ | $0.0650(1)$ | $0.052(1)$ |  |
| C3 | $0.1074(2)$ | $0.3181(3)$ | $0.0342(1)$ | $0.058(1)$ |  |
| C4 | $0.1716(2)$ | $0.1864(3)$ | $0.0437(1)$ | $0.057(1)$ |  |
| C5 | $0.1316(2)$ | $0.0761(2)$ | $0.0697(1)$ | $0.052(1)$ |  |
| C6 | $0.0068(2)$ | $0.0532(2)$ | $0.1004(1)$ | $0.043(1)$ |  |
| C7 | $0.0137(2)$ | $0.1312(2)$ | $0.1528(1)$ | $0.042(1)$ |  |
| C8 | $0.0690(2)$ | $0.2761(2)$ | $0.1540(1)$ | $0.038(1)$ |  |
| C9 | $0.0723(2)$ | $0.3328(3)$ | $0.2108(1)$ | $0.055(1)$ | $0.60(1)$ |
| C10a | $0.0273(5)$ | $0.4809(4)$ | $0.2070(2)$ | $0.072(2)$ | $0.40(1)$ |
| C10b | $0.1108(6)$ | $0.4901(6)$ | $0.1983(3)$ | $0.072(3)$ |  |
| C11 | $0.0367(3)$ | $0.5200(2)$ | $0.1503(1)$ | $0.063(1)$ |  |
| C12 | $0.1898(3)$ | $0.2932(4)$ | $0.2410(1)$ | $0.105(2)$ |  |
| C13 | $-0.1124(2)$ | $0.0937(2)$ | $0.0668(1)$ | $0.049(1)$ |  |
| C14 | $-0.0062(3)$ | $-0.1000(2)$ | $0.1134(1)$ | $0.068(2)$ |  |
|  |  | $*$ | $U_{\text {eq }}=\left(U_{11}+U_{22}+U_{33}\right) / 3$. |  |  |

Table 2. Bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

| $\mathrm{Ol}-\mathrm{Cl}$ | 1.448 (2) | C6- Cl 3 | 1.540 (4) |
| :---: | :---: | :---: | :---: |
| $\mathrm{O} 2-\mathrm{Cl} 3$ | 1.425 (3) | C6-C14 | 1.535 (4) |
| $\mathrm{C} 1-\mathrm{C} 2$ | 1.494 (3) | C7-C8 | 1.521 (3) |
| $\mathrm{Cl}-\mathrm{C} 8$ | 1.530 (3) | C8-C9 | 1.551 (3) |
| $\mathrm{Cl}-\mathrm{ClI}$ | 1.545 (3) | C9-C10a | 1.517 (5) |
| C2-C3 | 1.328 (3) | $\mathrm{C} 9-\mathrm{Cl2}$ | 1.477 (5) |
| C3-C4 | 1.462 (4) | $\mathrm{C10a}-\mathrm{Cl} 10 b$ | 0.885 (8) |
| C4--5 | 1.328 (3) | $\mathrm{Cl} 0 a-\mathrm{Cll}$ | 1.500 (5) |
| C5-C6 | 1.512 (4) | $\mathrm{Cl} 0 b-\mathrm{Cl1}$ | 1.468 (8) |
| C6-C7 | 1.540 (4) | C9-Cl0b | 1.610 (7) |
| $\mathrm{O} 1-\mathrm{Cl}-\mathrm{C} 2$ | 109.5 (2) | C6-C7-C8 | 119.5 (2) |
| $\mathrm{Ol}-\mathrm{Cl}-\mathrm{C} 8$ | 107.8 (2) | $\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 7$ | 117.8 (2) |
| $\mathrm{Ol}-\mathrm{Cl}-\mathrm{Cl1}$ | 108.9 (2) | $\mathrm{Cl}-\mathrm{C} 8-\mathrm{C} 9$ | $105 \cdot 3$ (2) |
| $\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 8$ | 117.4 (2) | C7-C8-C9 | 111.1 (2) |
| $\mathrm{C} 2-\mathrm{Cl}-\mathrm{Cll}$ | 110.1 (2) | C8-C9-C10a | 105.9 (2) |
| $\mathrm{C} 8-\mathrm{Cl}-\mathrm{Cl1}$ | 102.8 (2) | C8-C9-C10b | 99.2 (4) |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | 131.9 (3) | C8-C9-C12 | 114.3 (3) |
| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | 131.5 (2) |  |  |
| C3-C4--C5 | 131.0 (2) | $\mathrm{ClOa}-\mathrm{C} 9-\mathrm{Cl} 2$ | 121.8(3) |
| C4--C5-C6 | 129.6 (3) | $\mathrm{Cl} 06-\mathrm{C} 9-\mathrm{Cl} 2$ | 98.9 (4) |
| C5-C6-C7 | 109.9 (2) | $\mathrm{C} 9-\mathrm{Cl0}-\mathrm{Cl1}$ | 106.4 (3) |
| C5-C6-C13 | 109.8 (2) | C9- $\mathrm{Cl} 06-\mathrm{Cl1}$ | $103 \cdot 2$ (4) |
| C5-C6-C14 | 109.2 (2) | $\mathrm{Cl}-\mathrm{Cl1}-\mathrm{Cl} 0 a$ | $103 \cdot 2$ (2) |
| C7-C6-C13 | 113.2 (2) | $\mathrm{Cl}-\mathrm{Cl1}-\mathrm{Cl} 0 b$ | $110 \cdot 8$ (3) |
| C7-C6-C14 | 107.2 (3) |  |  |
| C13-C6-C14 | $107 \cdot 6$ (2) | $\mathrm{O} 2-\mathrm{Cl} 3-\mathrm{C} 6$ | 114.0 (2) |

Experimental. The preparation of the title compound is reported elsewhere (Feldman, Wu \& Rotella, 1989). Colorless crystals were obtained by vapordiffusion recrystallization from benzene-hexane. An elongated prism of approximate size $0.50 \times 0.54 \times$ 0.70 mm was used for data collection. Accurate cell dimensions and a crystal orientation matrix were determined on an Enraf-Nonius CAD-4 diffractometer by least-squares refinement of the setting angles of 25 reflections in the $\theta$ range $10-15^{\circ}$. Intensity data were collected by the $\omega / 2 \theta$ scan method with an $\omega$-scan width of $(0.70+0.35 \tan \theta)^{\circ}$ and a variable scan speed of $1.0-3 \cdot 5^{\circ} \mathrm{min}^{-1}$ using graphite-monochromatized Mo $K \alpha$ radiation with indices $h 0$ to $12, k 0$ to 11 and $l-30$ to 0 in the $\theta$ range $2-25^{\circ}$. The intensities of three standard reflections measured every 2 h showed no evidence of crystal decay. Inten-
sities of 2230 reflections were measured of which 1637 had $I>3 \sigma(I)$, and were used in the structure solution and refinement. Data were corrected for Lorentz and polarization factors; absorption was ignored.

The structure was solved by direct methods using MULTAN82 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1982). Refinement of the structure was by full-matrix least-squares calculations. $\mathrm{C}(10)$ was found to be disordered over two sites with occupancy factors of $0 \cdot 60$ (1) and $0 \cdot 40$ (1) which were determined through refinements in the initial cycles. At an intermediate stage in the refinement, a difference map revealed all H atoms except those for the disordered C atoms. H atoms were included in the subsequent cycles of refinement; $\mathrm{C}(10) \mathrm{H}$ atoms were fixed over two sites at geometrically idealized positions ( $\mathrm{C}-\mathrm{H} 0.95 \AA$ ). The non- H atoms were refined anisotropically and an overall isotropic temperature factor was allowed for the H atoms. Refinement converged with $R=0.050$ and $w R=\left(\sum w \Delta^{2} / \Sigma F_{o}^{2}\right)^{1 / 2}=0.085$. Max. shift/e.s.d. was less than $0 \cdot 1, S=1 \cdot 612, w=1 /\left[\sigma^{2}\left(F_{o}\right)+0 \cdot 10 \times\right.$ $\left.\left(F_{o}\right)^{2}\right] ;$ min. and max. electron density in the final difference map -0.35 and $0.41 \mathrm{e} \AA^{-3}$, respectively. Scattering factors were those of Cromer \& Mann (1968) and Stewart, Davidson \& Simpson (1965). All computer programs used were part of the EnrafNonius Structure Determination Package (B. A. Frenz \& Associates, Inc., 1985), and the figures were plotted using ORTEPII (Johnson, 1976).
The final fractional coordinates are given in Table $1^{*}$ and bond distances and angles for non- H atoms are in Table 2. The molecular structure with the crystallographic numbering scheme is depicted in Fig. 1.

Related literature. Structures containing the bicyclo[6.3.0]undeca-2,4-diene moiety have been reported by Zimmerman \& Bunce (1982), Feldman,

[^1] H -atom positions and torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52160 ( 22 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.


Fig. 1. Stereoview of the molecular structure of the title compound showing the atomic numbering scheme.

Come, Freyer, Kosmider \& Smith (1986) and Lindner, Kitschke, Hafner \& Ude (1980).

The author thanks Dr Feldman for providing the crystals of the title compound.

## References

B. A. Frenz \& Assoclites, Inc. (1985). SDP Structure Determination Package. College Station, Texas, USA, and EnrafNonius, Delft, The Netherlands.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Feldman, K. S., Come, J. H., Freyer, A. J., Kosmider, B. J. \& Sмітн, C. M. (1986). J. Am. Chem. Soc. 108, 1327-1328.

Feldman, K. S., Wu, M.-J. \& Rotella, D. P. (1989). J. Am. Chem. Soc. 111, 6457-6458.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lindner, H. J., Kitschke, B., Hafner, K. \& Ude, W. (1980). Acta Cryst. B36, 756-757.
Main, P., Fiske, S. J., Hull, S., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1982). MULTAN82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Zimmerman, H. E. \& Bunce, R. A. (1982). J. Org. Chem. 47, 3377-3396.

Acta Cryst. (1990). C46, 152-154

# Structure of a Tetracyclic Diketone 

By William H. Watson* and Ante Nagl $\dagger$<br>Department of Chemistry, Texas Christian University, Fort Worth, Texas 76129, USA<br>and Alan P. Marchand* and V. Vidyasagar<br>Department of Chemistry, University of North Texas, Denton, Texas 76203, USA

(Received 12 June 1989; accepted 28 July 1989)


#### Abstract

Ethyl 3,12-dioxotetracyclo[6.4.0.0 $0^{2,6} .0^{5,9}$ -dodec-10-ene-11-carboxylate (2), $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}, \quad M_{r}=$ 260.29, monoclinic, $A 2 / n, \quad a=11.602(1), \quad b=$ 6.922 (1), $\quad c=33.465$ (3) $\AA, \quad \beta=106.89$ (1) ${ }^{\circ}, \quad V=$ 2571.3 (4) $\AA^{3}, Z=8, D_{x}=1.345 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)$ $=0.71073 \AA, \quad \mu=0.91 \mathrm{~cm}^{-1}, \quad F(000)=1104, \quad T=$ 295 K, $R=0.0528$ for 1351 reflections. Compound (2) consists of a norbornane moiety with a fivemembered ring and a six-membered ring fused along each side. The five-membered ring contains a ketone functionality and is in a half-chair conformation while the cyclohexenone ring exhibits a 1,2 -diplanar conformation. The two end bonds of the norbornane moiety, $1 \cdot 580$ (5) and $1.569(4) \AA$, are significantly longer than other bonds in the structure. The two ketone groups and attached atoms are each planar ( $0.004 \AA$ r.m.s.d.) and form an interplanar angle of


 $46 \cdot 5(4)^{\circ}$. The ester side chain is disordered.Experimental. Studies of Lewis acid-promoted reactions of substituted pentacyclo[5.4.0.0 $\left.{ }^{2,6} .0^{3,10} .0^{5,9}\right]$ -undecane-8,11-diones (PCUD-8,11-diones) with ethyl diazoacetate (EDA) have been reported recently (Marchand, Arney, Gilardi \& Flippen-

[^2]Anderson, 1987; Marchand, Annapurna, Reddy, Watson \& Nagl, 1989). In one reaction a substituted tetracyclododecenedione, (2), was isolated in $17 \%$ yield (along with several other products) from the reaction of PCUD-8,11-dione (1) with EDA (1.3 equivalents) in the presence of boron trifluoride etherate (Scheme 1). A colorless crystal of (2) with dimensions $0.28 \times 0.40 \times 0.45 \mathrm{~mm}$ was mounted on a Nicolet $R 3 M / \mu$ update of a $P 2_{1}$ diffractometer; data collected in the $\omega$ mode ( $3 \leq 2 \theta \leq 45^{\circ}$ ), variable scan rate of 4 to $29.3^{\circ} \mathrm{min}^{-1}$ using graphite monochromated Mo $K \alpha$ radiation; lattice parameters from a least-squares refinement of 25 reflections $(25 \cdot 25 \leq$ $2 \theta \leq 28.77^{\circ}$ ), systematic extinctions ( $h k l, k+l=2 n$ $+1 ; h 0 l, h+l=2 n+1)$ and statistics consistent with space group $A 2 / n$ (permutation of $C 2 / c$, International Tables for Crystallography, 1983); monitored reflections ( 133 and $0,0,18$ ) showed variations of less than $\pm 2 \% ; 2405$ reflections measured ( $h=-12,11 ; k=$ $0,7 ; l=0,36), 1687$ unique ( $R_{\text {int }}=0.009$ ) and. 1351 $\geq 3 \sigma(I)$; Lorentz-polarization corrections and $\psi$-scan-based empirical absorption correction (transmission factors $0.711-0.990$ ) applied; structure solved by direct-methods, block cascade (Nicolet Instrument Corporation, 1986) least-squares refinement, H atoms located in difference map, the side chain is disordered and two positions can be found for $\mathrm{O}(4)$ and $\mathrm{C}(14)[0.57$ (1) and 0.43 (1) occu-


[^0]:    Abstract. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2}, \quad M_{r}=222.33$, orthorhombic, Pbca, $a=10.207$ (3), $b=9.746$ (6), $c=25.533$ (5) $\AA$, $V=2540(3) \AA^{3}, \quad Z=8, \quad D_{x}=1 \cdot 163 \mathrm{Mg} \mathrm{m}^{-3}$, Mo $K \alpha, \lambda=0.71073 \AA, \mu=0.071 \mathrm{~mm}^{-1}, F(000)=$ $976, T=293$ (1) K, $R=0.050$ for 1637 unique reflections with $I>3 \sigma(I)$. The molecular dimensions 0108-2701/90/010150-03\$03.00
    involving the eight-membered ring are normal while $\mathrm{C}(10)$ in the five-membered ring is disordered over two sites. The structure is stabilized by a short intermolecular distance $\mathrm{O}(2) \cdots \mathrm{H}(\mathrm{O})$ of $1.94 \AA$. There is a short intramolecular contact $\mathrm{O}(1) \cdots \mathrm{H}(\mathrm{O} 2)$ of $2.00 \AA$.
    © 1990 International Union of Crystallography

[^1]:    * Lists of structure amplitudes, anisotropic temperature factors,

[^2]:    * Authors to whom correspondence should be addressed.
    $\dagger$ On leave from Faculty of Technology, University of Zagreb, Zagreb, Yugoslavia.

